12 research outputs found

    Perception threshold and electrode position for spinal cord stimulation

    Get PDF
    The perception threshold for epidural spinal cord stimulation in chronic pain management was analyzed on 3923 testing data obtained from 136 implanted patients. The initial areas of paresthesiae due to stimulation were recorded and reported as the stimulation map according to the location of electrodes. Measurement of dorsal thickness of the cerebrospinal fluid (CSF) layer was obtained from 26 subjects using magnetic resonance imaging (MRI). The results indicate that the perception threshold is a function of the spinal level of the implanted electrodes, of the mediolateral position in the spinal canal and the contact separation of electrode. Differences in perception threshold at various vertebral levels are mainly due to varying depths of the dorsal CSF layer. The medially placed electrodes caudal to the mid-cervical levels have a higher perception threshold than more laterally placed ones. The electrodes at high and mid-cervical levels, however, have a smaller perception threshold if placed medially. The information obtained from this investigation has important implications for the design of a new-generation stimulation system and clinical application to maximize the longevity of the power source

    Paresthesia thresholds in spinal cord stimulation: a comparison of theoretical results with clinical data

    Get PDF
    The potential distributions produced in the spinal cord and surrounding tissues by dorsal epidural stimulation at the midcervical, midthoracic, and low thoracic levels were calculated with the use of a volume conductor model. Stimulus thresholds of myelinated dorsal column fibers and dorsal root fibers were calculated at each level in models in which the thickness of the dorsal cerebrospinal fluid (CSF) layer was varied. Calculated stimulus thresholds were compared with paresthesia thresholds obtained from measurements at the corresponding spinal levels in patients. The influences of the CSF layer thickness, the contact separation in bipolar stimulation and the laterality of the electrodes on the calculated thresholds were in general agreement with the clinical dat

    Surface textures

    Get PDF
    The potential distribution in volume couductor models of the spinal cord at cervical, midthoracic and lowthoracic levels, due to epidural stimulation, was calculated. Treshold stimuli of modeled myelhated dorsal column and dorsal root fibers were calculated and were compared with perception thresholds obtained from measurements in patients at correspoudiug spinal levels

    Beginnings of the societies

    No full text
    corecore